This calculator is useful for tests concerning whether a proportion, $p$, is equal to a reference value, $p_0$. The Null and Alternative hypotheses are
This calculator uses the following formulas to compute sample size and power, respectively: $$n=p(1-p)\left(\frac{z_{1-\alpha/2}+z_{1-\beta}}{p-p_0}\right)^2$$ $$1-\beta=\Phi\left(\frac{p-p_0}{\sqrt{\frac{p(1-p)}{n}}}-z_{1-\alpha/2}\right)+\Phi\left(-\frac{p-p_0}{\sqrt{\frac{p(1-p)}{n}}}-z_{1-\alpha/2}\right)$$ where
R code to implement these functions:
p=0.5 p0=0.3 alpha=0.05 beta=0.20 (n=p*(1-p)*((qnorm(1-alpha/2)+qnorm(1-beta))/(p-p0))^2) ceiling(n) # 50 z=(p-p0)/sqrt(p*(1-p)/n) (Power=pnorm(z-qnorm(1-alpha/2))+pnorm(-z-qnorm(1-alpha/2)))
Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman & Hall/CRC Biostatistics Series. page 85.