This calculator is useful when we wish to test whether a proportion, $p$, is different from a gold standard reference value, $p_0$. For example, we may wish to test whether a new product is equivalent to an existing, industry standard product. Here, the 'burden of proof', so to speak, falls on the new product; that is, equivalence is actually represented by the alternative, rather than the null hypothesis.
This calculator uses the following formulas to compute sample size and power, respectively: $$n=p(1-p)\left(\frac{z_{1-\alpha}+z_{1-\beta/2}}{|p-p_0|-\delta}\right)^2$$ $$1-\beta= 2\left[\Phi\left(z-z_{1-\alpha}\right)+\Phi\left(-z-z_{1-\alpha}\right)\right]-1 \quad ,\quad z=\frac{|p-p_0|-\delta}{\sqrt{\frac{p(1-p)}{n}}}$$ where
R code to implement these functions:
p=0.6 p0=0.6 delta=0.2 alpha=0.05 beta=0.20 (n=p*(1-p)*((qnorm(1-alpha)+qnorm(1-beta/2))/(abs(p-p0)-delta))^2) ceiling(n) # 52 z=(abs(p-p0)-delta)/sqrt(p*(1-p)/n) (Power=2*(pnorm(z-qnorm(1-alpha))+pnorm(-z-qnorm(1-alpha)))-1)
Chow S, Shao J, Wang H. 2008. Sample Size Calculations in Clinical Research. 2nd Ed. Chapman & Hall/CRC Biostatistics Series. page 87.